当前位置: 首页 > 小学六年级作文 > 小公式解大问题——数学论文

小公式解大问题——数学论文

年级:小学六年级作文   字数:706   作者:   时间:2025-03-05

德国数学家高斯想必大家都知道,他的数学天赋在小时候就显现了出来。

有一天高斯的数学教师情绪很低落,于是他对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”

结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”

高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢?

1+2+3+…+100=?

我也很奇怪,这该怎么在短短时间内求出答案呢?

原来高斯用了一个这样的公式

首项数+末项数*末项数(数量)/2

=(1+100)x100*2

=101x50

=5050

很神奇吧,如果在条件为首项数都为“1”末项数为“n”的情况下,那公式就简写为(1+n)n/2

真的是这样吗?我们来验证一下:

1+2+3+…+1000

=首项数+末项数*末项数(数量)/2

=(1+1000)*1000/2

=1001*500

=500500

1+2+3+…+16

=(1+16)*16/2

=136

1+2+3+…+11

=(1+11)*11/2

=66

用计算机再算了三遍,事实都的确如此,但第一道题末项数比之前多了一个“0”,于是最后算出来的结果也比之前多一个“0”, 这也是从中发现的一个规律。

可为什么能这么算呢?因为这个公式用了拆分法,它把整个算式“大手拉小手”就比如说100+1,99+2,98+3答案都是一样的,而后来乘了末项数(在这时末项数就代表数量)。

就拿1+2+3+…+10为例子,把算式完全写起来就成了:

1+10+ 2+9 +3+8 +4+7 +5+6+ 6+5 +7+4+ 8+3+ 9+2 +10+1

而涂出来的那段即是重复的,便/2,这样就刚好得出和了。

看来这个公式对加数依次渐进1数值的多数加法这是一个非常实用的方法呢,也便于理解并运用于生活之中,单数双数都能用,你学会了吗?

评论 (0)

最新作文
[杂文]

谈“网络”

2025-06-19
[散文]

地铁

2025-06-19
[诗歌]

玄色.六月

2025-06-19
[散文]

时间的逝世

2025-06-19
[诗歌]

何家小蚊子历险记

2025-06-19
[周记]

品《听蜀僧濬弹琴 》

2025-06-19
[小说]

记忆的片段在歌唱

2025-06-19
[演讲稿]

诵读考级活动

2025-06-19
[写人]

没完没了的说活

2025-06-19
[读书笔记]

今天真倒霉!

2025-06-19
精选作文
[诗歌]

深归

2025-06-20
[写景]

消灭“白色魔鬼”

2025-06-20
[周记]

俺是农民

2025-06-20
[小说]

风雨流年,烟雨如梦

2025-06-20
[日记]

说书

2025-06-20
[诗歌]

梦游“鸟巢”

2025-06-20
[书信]

写给蟑螂的一封信

2025-06-20
[周记]

作者:此文章已获奖张国青

2025-06-20
[议论文]

笑一笑 十年少

2025-06-20
[诗歌]

猫三狗四

2025-06-20
请在APP中进行此操作
扫描二维码下载APP
好学生作文APP下载